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Abstract: The long-term performance of batteries depends strongly on the 3D morphology of elec-
trode materials. Morphological changes, i.e., particle fracture and surface deterioration, are among
the most prominent sources of electrode degradation. A profound understanding of the fracture
mechanics of electrode materials in micro- and nanoscale dimensions requires the use of advanced
in situ and operando techniques. In this paper, we demonstrate the capabilities of laboratory X-ray
microscopy and nano X-ray computed tomography (nano-XCT) for the non-destructive study of the
electrode material’s 3D morphology and defects, such as microcracks, at sub-micron resolution. We
investigate the morphology of Na0.9Fe0.45Ti1.55O4 sodium iron titanate (NFTO) cathode material in
Li-ion batteries using laboratory-based in situ and operando X-ray microscopy. The impact of the
morphology on the degradation of battery materials, particularly the size- and density-dependence
of the fracture behavior of the particles, is revealed based on a semi-quantitative analysis of the
formation and propagation of microcracks in particles. Finally, we discuss design concepts of the
operando cells for the study of electrochemical processes.

Keywords: battery; cathode material; operando study; X-ray microscopy; X-ray computed tomography;
3D imaging; crack formation; crack propagation; degradation process

1. Introduction

The development of new materials for efficient and durable systems used for energy
storage and conversion is crucial for modern and future energy technologies and transport,
which heavily rely on the use of renewable power sources, hybrid, and all-electric vehi-
cles [1–3]. The performance of batteries strongly depends on the 3D microstructure and
morphology of the porous electrode materials [4,5]. The morphology and the fluid dynamic
transport properties of such porous structures are described by open porosity, pore size
distribution, permeability, tortuosity, and constrictivity [6–8]. One of the main concerns
related to alkali metal-ion batteries is their lifetime extension, as recycling technologies are
only in the early development stage and are far from economically efficient [9–11].

Morphological changes, i.e., particle fracture and surface deterioration, are among
the most prominent sources of electrode degradation and eventual irreversible capacity
loss [12,13]. These effects play a major role in electrode failure at high current loads,
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especially in materials where the reversible storage of alkali ions is accompanied by high
volume changes [14]. Microcrack formation and propagation in particles that form the
electrodes lead to rupture and reformation of the solid electrolyte interphase (SEI), which is
accompanied by a capacity decline in full cells. Furthermore, microcracks cause a decrease
in electronic conductivity, as well as a disruption of ionic transport [12,15]. Electrically
disconnected particles and accelerating chemical reactions caused by the newly formed SEI
result in increased impedance and reduced battery performance.

Therefore, a profound understanding of the fracture mechanics of electrode materials
in micro- and nanoscale dimensions, including the formation and propagation of microc-
racks, is mandatory for the development of more stable and durable electrodes that meet
the lifetime requirements for specific use cases. Only in situ and operando studies at condi-
tions as close as possible to the real operational conditions of the system allow the study of
the degradation kinetics and provide reliable data on the operation of battery electrodes
during real electrochemical processes [16–18]. These in situ and operando regimes allow the
investigation of physical and chemical transformations of the material in a time-resolved
manner and the tracking of intermediate states. In addition, numerous factors that might
heavily affect the accuracy and the reproducibility of the data and eventually the final
result of an experimental study, such as electrode relaxation upon removal of the poten-
tial, sample contamination and degradation during the transfer from the electrochemical
cell to the experimental setup, as well as sample preparation procedures, are reduced in
electrochemical operando studies [19–22].

Experiments that monitor the behavior of a material during the charge/discharge
cycles of a battery require the use of advanced techniques and tools for in situ and operando
studies. In particular, an experimental setup is needed for microcrack formation and
growth during charge/discharge cycling of the battery cell and for simultaneous imaging
of microcracks in battery materials at the micro- and nanoscale. X-ray imaging techniques
have the particular advantage of allowing non-destructive 3D imaging of the interior of
opaque materials, which is a necessary prerequisite for the study of kinetic processes and
the development of the microstructure in materials and systems [23–25].

A miniaturized test setup for 3D-structured systems and materials—an electrochemical
cell in an X-ray microscope—provides a unique capability for high-resolution 3D imaging
of microcracks during cycling the battery cell. Nano-X-ray computed tomography (nano-
XCT) is suitable for imaging microcracks in advanced materials for battery electrodes
with sub-100 nm resolution and to draw conclusions on the mechanical robustness of the
battery cell itself. X-ray microscopy and nano-XCT are the only techniques that allow the
nondestructive imaging of microcracks at sub-micron resolution [26].

The potential of X-ray microscopy and nano-XCT for battery research has been re-
ported in several studies at synchrotron beamlines [27–30]. However, systematic material
development requires an experimental setup next to the material synthesis and 24/7 tool
access. Therefore, in this paper, we demonstrate the capabilities of laboratory nano-XCT
for the study of the 3D morphology of electrode materials and defects, such as microcracks.

In recent years, increasing efforts have been devoted to the development of hybrid
Li/Na-ion systems, motivated mainly by the higher abundance and lower cost of Na [31,32].
Such systems may be based on polycationic electrode materials or on Li-based (Na-based)
electrodes or electrolyte in Na-based (Li-based) electrochemical systems [33]. Furthermore,
the employment of materials with mixed d-metal cations or materials that exhibit anion
redox reactions, such as oxygen redox, has recently been studied intensively. In this scope
and due to the abundant nature of Ti, pure titanate-based or Ti-doped polyanionic cathodes
are receiving ever-increasing attention [34].

Prospective candidates for both Li- and Na-ion systems are novel cathode materials
based on Na0.9Fe0.45Ti1.55O4 sodium iron titanate (NFTO) [35]. Although the material
demonstrates promising electrochemical performance and a potential for reversible anion
(oxygen) redox activity, it suffers from the irreversible capacity loss of around 20% in the first
three cycles for Li-ion systems [36]. One of the potential reasons is the degradation of the
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active phase material, which leads to a disruption of the transport of charge carriers, i.e., ions
and electrons. In this paper, we investigate the morphological aspects of material stability
in Li-ion batteries by means of laboratory-based in situ and operando X-ray microscopy.

2. Materials and Methods

Laboratory X-ray microscopy data were acquired using an Xradia nanoXCT-100 (Xra-
dia, Pleasanton, CA, USA) tool. This transmission X-ray microscope (TXM) consists of
a rotating anode X-ray source (Cu-Kα radiation, 8 keV photon energy), capillary con-
denser optics with a central beam stop, a Fresnel zone plate (FZP) as an objective lens,
and a 2D detector (1024 × 1024 pixels). In the full-field imaging mode, the field of view
is 67 µm × 67 µm, resulting in a pixel size of 65 nm. Since this setup provides almost
parallel-beam geometry, rotation of 180 degrees is sufficient for tomography. Imaging
microcrack evolution in 3D nanopatterned systems using a laboratory X-ray microscope
equipped with a micro-mechanical stage has been shown recently [37,38]. In this study, a
specially designed electrochemical operando cell is built and applied for the imaging of
morphology changes and of the evolution of defects such as microcracks in particles. In
order to collect tomography data and to meet the requirements for the microscope setup
(working distance, focus, field of view, system rigidity), the cell is attached to the rotary
stage inside the microscope.

The electrochemical operando cell (Figure 1a) consists of two Sigradur-G glassy carbon
discs (Hochtemperatur-Werkstoffe GmbH, Thierhaupten, Germany), which act as current
collectors and X-ray-transparent windows. The 300 µm thick discs are housed in the
recesses of stainless steel plates to increase the structural integrity of the electrochemical
operando cell and to provide reliable and convenient electrical contacts to the glassy carbon
discs. Anode and cathode sides of the cell are separated by an electrically insulating 3D-
printed polyamide (Nylon Strong, Print Product, Moscow, Russia) spacer that also centers
the sealing O-ring (EPDM rubber, Marco Rubber & Plastics, Seabrook, NH, USA). This
ensures its optimal compression for proper sealing while providing additional stiffness
to the cell. The cell is fixed and tightened with 4 bolts that are insulated from the cell
with 3D-printed polyamide liners (same material as for spacer). After assembly, the cell
is installed into the custom adapter and mounted to the standard sample plate inside the
X-ray microscope (Figure 1b). The adapter ensures proper cell alignment and a reliable
connection of wires with circular terminals to the stainless steel plates. Slits in the stainless
steel plates and the low total thickness of the cell internals (~1.4 mm between outer surfaces
of the glassy carbon windows) allow X-rays to pass through the electrochemical operando
cell at a wide range of angles, from −67.5 to 67.5 degrees relative to the normal, enabling
limited-angle X-ray tomography. The angular range is limited due to the cell design, as the
cell enclosure and internal components block the beam at higher angles.

The Na0.9Fe0.45Ti1.55O4 active material, synthesized as reported elsewhere [35], was
mixed and mortared with carbon (Timcal Super P Conductive, Alfa Aesar, Haverhill, MA,
USA) and PVDF (Sigma Aldrich, St. Louis, MO, USA, 5% solution in NMP) in a 70:25:5 wt.%
ratio, with an additional 40 wt.% (relative to the total mass of the mixture) of pure NMP
(Sigma Aldrich) added afterwards to reach the viscosity required for electrode deposition.
The resulting slurry was cast onto glassy carbon disks to form electrodes (5 mm in diameter)
with a mass load of ~5 mg/cm2. The mass load was calculated to achieve ~15 µm electrode
thickness to be transparent for 8 keV photons. Gold beads (1.5–3 µm size, Alfa Aesar)
were deposited on the surface of the slurry to act as markers for the 3D tomographic
reconstruction. All preparations were performed in a glovebox under an Ar atmosphere.
Electrodes were then dried at 80 ◦C under vacuum for 12 h.
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Figure 1. (a) Schematic representation of the electrochemical operando cell, including: (1) stainless
steel enclosure plate, (2) glassy carbon window/current collector, (3) polyamide spacer, (4) polyamide
insulator, (5) washer, (6) bolt, (7) nut, (8) sealing O-ring; (b) schematic representation of the laboratory
experimental setup for electrochemical in situ and operando nano-XCT studies.

Electrochemical studies were carried out in half cells against a metallic Li foil (3 layers,
G-Materials, Germany, 250 µm thickness) using a SP200 potentiostat/galvanostat (Biologic
Instruments, Cecinet Parise, France). A Celgard 2600 polymer separator (Celgard, Charlotte,
NC, USA) soaked with 1M LiPF6 in EC:DMC 1:1 (v/v, battery grade, Sigma Aldrich) was
applied. The assembly process was performed in a glovebox under an Ar atmosphere. For
operando X-ray radiography, the cells were cycled galvanostatically using a current density
of 60 mA/g between 1.5 V and 4.5 V vs. Li/Li+. For in situ X-ray tomography in either
fully charged or discharged states, a potentiostatic hold period of 20.5 h was introduced at
the upper and lower cut-off voltages (see Figure 2).

An X-ray tomography tilt series consisting of 601 images within a limited angular
range of 135◦ was recorded at several electrochemical stages of the kinetic process, i.e., the
charging/discharging cycles of the battery. The exposure time per image was 120 s. The
camera binning of 2 resulted in a voxel size of 129 nm3.

The crack width (distance between the particles) was analyzed using the virtual
projections with the “Line Width” tool of ImageJ software [39]. The data were taken at the
center of the particle and presented as measurements from the same area in three directions.
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Figure 2. Electrochemical cell potential as a function of time, with “stopping points” for X-ray
tomography studies denoted. Insets show characteristic virtual cross-sections. Only the first cycle and
two further “stopping points” with virtual cross-sections are shown; the rest of the electrochemical
process is represented as gaps.

3. Results

The evolution of a specific microcrack in a selected particle due to cycling is shown
in a sequence of virtual cross-sections at specific electrochemical stages in Figure 3. It is
presented by reconstructed of single cross-section images for three planes XY, YZ, and
XZ (Cartesian coordinate system) from the initial (Tomo 00) to the final (Tomo 04) electro-
chemical states. In the XY and XZ cross-sections at Tomo 00, the initial microcrack, visible
as a dark line on a bright dense particle, is more pronounced than in the YZ plane. The
microcrack growth is already visible in all space dimensions at the first charge (Tomo 01)
and first discharge (Tomo 02) stages. Further charging/discharging for five cycles (Tomo 03)
and 30 cycles (Tomo 04) results in the separation of the large solid particle into smaller ones.
The semi-quantitative investigation of the crack width growth in different projection planes
is presented in Figure 4. Based on these data, we are able to conclude that the microcrack
growth is similar in all three Cartesian directions, and that after six cycles microcracks
begin to split some large particles of the NFTO cathode into smaller particles. A more
detailed qualitative and quantitative analysis is planned using algorithms to compensate
for inaccuracies in the reconstruction of high-resolution XCT data, as described in [40].
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Figure 4. Evolution of microcracks in the particle marked in Figure 3. Growth of the most pronounced
cracks in three different virtual cross-sections is shown as a function of tomography number. The
error bar corresponds to the voxel size of 129 nm3.

The X-ray tomography data show the presence of particles with different densities
and size distribution. Many particles in the as-prepared material already demonstrate
some initial microcracks. However, most of them do not show any noticeable growth
during cycling. Another notable observation is that the probability of the formation and
growth of microcracks is higher for larger particles with low density than for the denser
and finer particles. These phenomena are indicated in Figure 5, which shows a few more
medium-sized particles with chipped cracks (red arrows) that do not propagate due to
cycling, and denser particles without visible cracks (red square).



Crystals 2022, 12, 3 7 of 12Crystals 2021, 11, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 5. Virtual X-ray tomography cross-sections. Arrows mark medium-sized and less dense par-
ticles that already had microcracks in the as-prepared material, but did not show any evolution. 
Rectangles mark a smaller, dense particle that did not show any cracks during the experiment. 

4. Discussion 
It is widely accepted that fracture in battery materials is one of the primary sources 

of electrode degradation and capacity loss [41]. The rapid occurrence and development of 
microcracks during the very first cycles, observed for the NFTO material in this study, are 
supposed to be the reason for the previously observed capacity loss of around 20% in the 
first three cycles, accompanied by a decrease in the Fe2+/Fe3+ redox conversion ratio [36]. 
Since the TEM investigation suggests an average particle size of 2-6 μm for the as-pre-
pared Na0.9Fe0.45Ti1.55O4 active material, we are obviously dealing with secondary particles, 
namely agglomerates of primary particles with carbon and binder polymer [35]. Thus, for 
the particles that are denser (as judged by the gray value), we assume more rugged and 
condensed secondary particles (i.e., containing more active phase) rather than those of the 
NFTO phase. The intergranular fracture (cracking of secondary electrode particles) often 
leads to the isolation of active material. Hence, it might no longer be accessible for the 
transport of charge carriers, such as ions or electrons, and therefore becomes electrochem-
ically inactive. Microcrack growth and further separation of particles also continuously 
create new interfaces that provokes unwanted SEI formation, consumption of electrolyte, 
active electrode material, and alkali metal ions, and eventually decreases the cycling effi-
ciency and reduces the lifetime of the battery cell. 

Chemo-mechanical stress caused by the supposed electrochemical substitution of Na 
by Li ions during the initial cycles of NFTO material in the Li-ion system might accelerate 
the processes of microcrack formation and propagation. The estimated volume change 
between the fully charged and discharged states of the material should be around 2%, as 
suggested by the results of DFT geometry optimization for the NFTO structure (refined 
from powder XRD data) with different contents of Li and Na ions [36]. At the same time, 
some of the particles of the as-prepared electrode already had pre-cracks, either as a result 
of the applied synthesis technique or due to mechanical impact during the electrode slurry 
preparation. Although there are several studies suggesting that particles with initial de-
fects are more likely to show further fracture development, in the present case, not all 
were susceptible to the crack evolution [42–44]. Moreover, there is a clear relationship 
between particle size and crack formation. Larger and less dense particles are more sus-
ceptible to both initial fracture and further degradation. This phenomenon of particle size-

Figure 5. Virtual X-ray tomography cross-sections. Arrows mark medium-sized and less dense
particles that already had microcracks in the as-prepared material, but did not show any evolution.
Rectangles mark a smaller, dense particle that did not show any cracks during the experiment.

4. Discussion

It is widely accepted that fracture in battery materials is one of the primary sources of
electrode degradation and capacity loss [41]. The rapid occurrence and development of
microcracks during the very first cycles, observed for the NFTO material in this study, are
supposed to be the reason for the previously observed capacity loss of around 20% in the
first three cycles, accompanied by a decrease in the Fe2+/Fe3+ redox conversion ratio [36].
Since the TEM investigation suggests an average particle size of 2–6 µm for the as-prepared
Na0.9Fe0.45Ti1.55O4 active material, we are obviously dealing with secondary particles,
namely agglomerates of primary particles with carbon and binder polymer [35]. Thus,
for the particles that are denser (as judged by the gray value), we assume more rugged
and condensed secondary particles (i.e., containing more active phase) rather than those
of the NFTO phase. The intergranular fracture (cracking of secondary electrode particles)
often leads to the isolation of active material. Hence, it might no longer be accessible
for the transport of charge carriers, such as ions or electrons, and therefore becomes
electrochemically inactive. Microcrack growth and further separation of particles also
continuously create new interfaces that provokes unwanted SEI formation, consumption of
electrolyte, active electrode material, and alkali metal ions, and eventually decreases the
cycling efficiency and reduces the lifetime of the battery cell.

Chemo-mechanical stress caused by the supposed electrochemical substitution of Na
by Li ions during the initial cycles of NFTO material in the Li-ion system might accelerate
the processes of microcrack formation and propagation. The estimated volume change
between the fully charged and discharged states of the material should be around 2%, as
suggested by the results of DFT geometry optimization for the NFTO structure (refined
from powder XRD data) with different contents of Li and Na ions [36]. At the same time,
some of the particles of the as-prepared electrode already had pre-cracks, either as a result
of the applied synthesis technique or due to mechanical impact during the electrode slurry
preparation. Although there are several studies suggesting that particles with initial defects
are more likely to show further fracture development, in the present case, not all were
susceptible to the crack evolution [42–44]. Moreover, there is a clear relationship between
particle size and crack formation. Larger and less dense particles are more susceptible to
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both initial fracture and further degradation. This phenomenon of particle size-dependence
on fracture was previously reported for other insertion cathode materials [14,45].

A possible reason for the higher fracture susceptibility of larger particles (especially at
higher current densities) might be the state-of-charge (SOC) heterogeneity. For materials
with slower insertion kinetics, the alkali metal ion concentration and thus the local charge
state of a redox-active transition metal might differ substantially between the core and the
shell of the particle, with the difference increasing as the particle size and current density
increased [14,46,47]. In addition, gradients of the chemical potential or the concentration
of elements in a (large) particle might significantly accelerate the intragranular fracture
processes [13,48]. However, to address the SOC heterogeneity in the particles, the 3d-metal
charge state has to be quantified in a spatially resolved manner by applying high-resolution
spectroscopic techniques such as X-ray absorption spectromicroscopy or spectrotomogra-
phy [49–51]. Although it is not possible with state-of-the-art laboratory nano-XCT tools
because of the use of characteristic X-rays (Cu-Kα), the developed electrochemical operando
cell is well suited to X-ray absorption spectroscopy studies.

One key element of operando studies of batteries and their components is the design
of the electrochemical operando cell [52]. For neutron or ultrahard X-ray studies, it is
possible to use simple pouch cells without any windows; for X-ray techniques using photon
energies below 10 keV, the cell design has to include X-ray transparent windows [53]. For
laboratory nano-XCT tools, the selection of the material for the windows is particularly
important because of the lower brilliance of the X-ray sources compared to synchrotron
radiation sources. A large variety of window materials that was previously employed in
cell designs. One class of materials is polymer thin films, such as polyimide (Kapton) or
polyester (Mylar) [54,55]. However, these electrically insulating materials introduce current
inhomogeneities, since the composite electrode itself usually exhibits comparably low
electron conductivity. This could result in reduced electrochemical activity in the window
region, the region of interest for the experiment. The use of electrodes pre-deposited on
some conductive surface (i.e., Al or Cu foil) will eliminate this issue; however, the metal
foils will introduce additional absorption background for the acquired X-ray images. The
reduced signal-to-noise ratio will require increased acquisition times. As an alternative,
polymer films might be coated e.g., with a thin layer of aluminum to provide a homoge-
neous current density across the whole surface of the electrode [56]. However, the gas and
moisture permeability of these thin films limits the overall lifetime of the electrochemical
cells. Moreover, polymer thin films are not rigid enough to ensure proper pressure on the
electrode stack. This, again, will negatively affect the reliability of the electrical contact and
the electrochemical behavior of the cell, especially at high current densities. To overcome
this issue, one could use structurally rigid X-ray-transparent materials, such as mica or
sapphire [57]. However, these materials are also electrically insulating and require the use
of conductive coatings or dedicated current collectors. Additionally, highly textured or
polycrystalline windows might introduce additional features to the images. Beryllium, the
most commonly used material for X-ray windows, aside from being highly toxic, is easily
oxidized and unstable at high electrode potentials (>4 V vs. Li/Li+).

Ideally, the windows for an electrochemical operando cell must be rigid, nonpermeable
to gases and moisture, and electrically conductive. In addition, it should also be amorphous
and should have a low absorption of photons in the selected energy range [58]. Glassy
carbon, used in a wide variety of electrochemical and electrocatalytic applications, fulfils
these requirements. Due to being both highly conductive and X-ray transparent, it acts
simultaneously as a current collector and a window. Its high density provides a reliable
seal for the electrode stack, protecting the cell from damage by gases and moisture. Though
somewhat sensitive to direct contact with lithium and sodium, glassy carbon has negligible
electrochemical activity over a wide potential range from 0.5 to 4.8 V vs. Li/Li+. Thus, it
is suitable for applications with most electrode compositions for Li- and Na-ion batteries.
However, for operando studies at laboratory tools, the windows should be comparably
thin due to the limited brilliance of the X-ray source. Such thin glassy carbon windows are
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extremely fragile and require proper structural support from the cell enclosure. Addition-
ally, the overall thickness of the cell should be as low as possible, since the pathway of the
X-ray beam through the window material increases significantly at the high angles needed
for nano-XCT image acquisition (or spectrotomography). All these factors were considered
during the design and the development of the electrochemical operando cell described in
this paper.

5. Conclusions

The application of operando X-ray imaging with a properly designed electrochemical
cell in battery research enables the 3D visualization of the microstructure and morphology
evolution of composite electrodes, e.g., the formation and growth of defects, such as
microcracks. In addition, operando studies provide numerous benefits in terms of reliability
and reproducibility of the measurements. Easy and safe electrode preparation techniques,
similar to the ones used for conventional electrochemical measurements in Swagelok-type
cells or coin cells, can be applied. The operando approach eliminates the risk of chemical or
mechanical damage to the material during sample preparation and provides the possibility
to track intermediate states. Data from the same region of interest of the same sample can be
gathered continuously, allowing the tracking of the full evolution of specific microstructure
features and defects. The application of high-resolution operando X-ray imaging together
with complementary techniques (i.e., X-ray absorption spectroscopy for spectromicroscopy
or spectrotomography) would allow complex data on both morphological and chemical
states of the materials to be gathered.

The combination of the operando approach and high-resolution X-ray imaging opens
the way for the development of design concepts for novel engineered material systems such
as battery electrodes, considering their local mechanical properties. The approach described
in this paper is extendable to other materials for energy storage and conversion (e.g.,
materials for fuel cells and water splitting) and more generally to all materials, particularly
to composites and skeleton materials, and to hierarchically structured material systems.

Using a laboratory X-ray microscope equipped with an electrochemical operando cell
on a rotary stage, it is possible to reconstruct the 3D morphology evolution of electrode
materials. The approach allows tracking of the formation and propagation of microcracks
in the active phase down to a single particle semi-quantitatively. The data obtained provide
morphological insights on material performance and degradation, as well as the size-
and density-dependence of the fracture behavior. The electrochemical operando cell has
the design and the features suitable for integration into various complementary X-ray
spectroscopy and X-ray scattering experiments to allow the kinetic studies of the atomic
and electronic structures of the sample.

Based on the understanding of kinetic processes in materials, such as changes in their
morphology (e.g., volume change caused by phase transformations) and the formation
and growth of defects (e.g., microcracks), concepts for crack steering into regions of high
fracture toughness can be established with the goal of designing engineered damage-
tolerant materials.
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